混合掺杂 Cr4+, Yb: YAG 晶体储能特性的数值模拟

郑建刚 严雄伟 蒋新颖 王振国 段文涛 李明中 (中国工程物理研究院激光聚变研究中心,四川 绵阳 621900)

摘要 借助于 Cr⁴⁺,Yb:YAG 激光放大器抽运动力学模型,在浓度(原子数分数)厚度(mm)积为 15% • mm、抽运 功率密度为 20 kW/cm² 的情况下,对不同口径、不同掺杂浓度的 Cr⁴⁺,Yb:YAG 晶体放大器中的储能进行了模拟 计算。计算表明,在不掺入 Cr⁴⁺ 的 Yb:YAG 晶体中,随着 Yb³⁺ 浓度的增加(横向尺寸不变)和横向尺寸的增加(浓 度不变),最终获得的储能密度反而减小。但在混合掺入 Cr⁴⁺ 后,放大器中的储能将受到 Cr⁴⁺ 浓度的影响,在 Yb³⁺ 的浓度和横向尺寸一定情况下,放大器中的最大储能随 Cr⁴⁺ 的增加将先增加,后减小,即:在一定情况下,为 了获得放大器中最大的储能,掺入的 Cr⁴⁺离子浓度有一优化值,这一优化值将由 Yb³⁺离子浓度和介质的横向尺寸 确定。

关键词 材料;混合掺杂晶体;Crⁱ⁺,Yb:YAG 晶体;数值模拟;储能特性
 中图分类号 TN248.1
 文献标识码 A
 doi: 10.3788/CJL201138.1006005

Numerical Simulation of Energy Storage in Cr⁴⁺, Yb:YAG Crystal Amplifier

Zheng Jiangang Yan Xiongwei Jiang Xinying Wang Zhenguo Duan Wentao Li Mingzhong

(Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China)

Abstract The energy storage in the Cr^{4+} , Yb: YAG crystal amplifier is stimulated under the conditions of atom fraction thickness product 15% • mm and pumping density 20 kW/cm² for different apertures and doped Cr^{4+} and Yb³⁺ densities, using the pumping dynamic model for Cr^{4+} , Yb: YAG crystal amplifier. The results indicate that the density of energy storage decreases with the increasing of Yb³⁺ and amplifier aperture in absence of Cr^{4+} ; but the doped Cr^{4+} in Yb: YAG crystal affects on the energy storage in the amplifier. In some cases the maximum energy storage time is an optimized Cr^{4+} density, which is determined by the Yb³⁺ density and aperture of amplifier. **Key words** materials; co-doped crystal; Cr^{4+} , Yb: YAG crystal; numerical simulation; energy storage **OCIS codes** 160.3380; 140.3280; 160.4670; 140.3580

1 引 盲

Yb³⁺结构简单,从原理上讲,其不存在激发态 吸收、上转换和浓度淬灭效应,非常适合用作激光介 质掺杂。由于 Yb³⁺的吸收带位于激光上能级附近, 从而大大降低了激光介质中的热沉积,提高了激光 系统的光转换效率。由于 Yb:YAG 晶体具有大的 晶场分裂能、优异的热性能、可进行高掺杂和生长工 艺成熟等优点,已经成为掺 Yb³⁺的主流材料^[1~5]。 更为突出的是,由于 Yb³⁺的吸收光谱在 0.9~ 1.0 μ m附近,正好位于 InGaAs 激光二极管(LD)的 发射波段,非常适合于 LD 抽运^[5~7]。随着 LD 生长 和封装技术的日益成熟,更推动了 Yb: YAG 材料的 进一步发展。Cr⁴⁺ 在 1 μm 波段附近具有可饱和吸 收特性,掺 Cr⁴⁺ 的 YAG 晶体通常作为激光振荡器 的调 Q 元件^[8]。混合掺杂 Cr⁴⁺,Yb: YAG 晶体具 有 Cr⁴⁺: YAG 晶体的可饱和吸收特性,同时也具有 Yb³⁺: YAG 晶体的光学性能^[9,10],在近年得到了较 多重视,科学家们用 Cr⁴⁺,Yb: YAG 成功地研制出 自调 Q 激光振荡器^[11~13]。考虑到放大自发辐射 (ASE)在介质中是小信号,在Yb: YAG 晶体中混合 掺入 Cr⁴⁺将对波长为1030 nm的 ASE 光线吸收,而 在主激光到来时,其前沿将对 Cr⁴⁺漂白,而顺利通

作者简介:郑建刚(1974—),男,博士,副研究员,主要从事重频高功率固体激光技术方面的研究。

收稿日期: 2011-04-06; 收到修改稿日期: 2011-06-21

E-mail: zjg8861@gmail.com

过放大介质进行放大。Cr⁴⁺,Yb:YAG 晶体用作激 光放大器,目前还未见报道。

本文从抽运动力学模型出发,在给定抽运强度下,对基于 Cr⁴⁺,Yb:YAG 晶体的激光放大器中的 储能特性进行了研究,针对不同口径和不同掺 Yb³⁺ 浓度的激光晶体,获得了优化的 Cr⁴⁺浓度。

2 抽运动力学模型

介质中的激光过程分为3个相对独立的过程, 即:抽运储能过程、ASE 对储能的耗散过程、主激光 对储能的提取过程(为了便于实验对比,这里将主激 光的提取过程也放入模型中)。这样分激光过程是 基于以下思考:抽运过程是一个慢且长的过程,抽运 速率相对于主激光的提取速率非常小,因此,在较短 的时间间隔内,可以认为介质中的储能变化不大;自 发辐射(SE)始终为小信号,可以认为 SE 在此时间 间隔内被线性放大,而介质内储能不会发生明显变 化。这样,可以将抽运和 ASE 过程分开计算;主激 光提取过程在时间上本身也是独立的。当然,这要 求计算过程的时间间隔要足够小。

由于 Cr⁴⁺,Yb:YAG 晶体既含有 Cr⁴⁺,又含有 Yb³⁺,因此其光谱中既表现有 Yb³⁺的光谱特性,又 包含有 Cr⁴⁺的光谱特性。为了理论上分析基于 Cr⁴⁺,Yb:YAG 晶体的激光放大器的放大性能,分 别依据两种粒子的光学性能,建立激光过程模型。

常温下,Yb³⁺的电子构型为4f¹³,其能级结构如 图1所示,在晶格场的作用下,能级发生分裂,激光 过程发生在上能级²F_{5/2}最低的斯塔克能级和下能 级²F_{7/2}的子能级之间,形成准三能级的激光运行机 制。因此表征激光上能级粒子数密度的速率方程为

$$\frac{\mathrm{d}N_{\mathrm{U}}}{\mathrm{d}t} = \sigma_{\mathrm{p}} c \varphi_{\mathrm{p}} \Delta N_{\mathrm{p}} - \frac{N_{\mathrm{U}}}{\tau_{\mathrm{U}}} - \sigma_{\mathrm{I}} c \varphi_{\mathrm{I}} \Delta N_{\mathrm{I}}, \qquad (1)$$

式中 $N_{\rm U}$ 为上能级粒子数, $\Delta N_{\rm p}$ 为介质吸收的抽运

图 1 Yb³⁺的能级结构图 Fig. 1 Energy-level diagram for Yb³⁺

光光子数, ΔN₁ 为激光光子数; 右边的 3 项分别表示 抽运吸收、自发辐射和 ASE,这里暂不考虑 ASE 效 应。主要是由于抽运过程中,在非常小的时间间隔 内,介质中的储能可以近似为常数,因此, ASE 在这 一时间间隔将是一常数,其在(1)式的微分方程中将 是一小量。其后,将根据介质该时刻的储能情况,单 独计算该时间间隔内的 ASE。简化后,(1)式变为

$$\frac{\mathrm{d}N_{\mathrm{U}}}{\mathrm{d}t} = \sigma_{\mathrm{p}} c \varphi_{\mathrm{p}} \Delta N_{\mathrm{p}} - \frac{N_{\mathrm{U}}}{\tau_{\mathrm{U}}}.$$
 (2)

常温下 Cr⁴⁺具有如图 2 所示的能级结构,表征 4 价 Cr 离子 1,2 能级粒子数密度的速率方程为

$$\frac{\mathrm{d}N_{1}}{\mathrm{d}t} = -\sigma_{\mathrm{g}}c\varphi_{\mathrm{p}}N_{1} - \sigma_{\mathrm{g}}'c\varphi_{\mathrm{Yb}}N_{1} + \frac{N_{2}}{\tau_{\mathrm{g}}}, \qquad (3)$$

$$\frac{\mathrm{d}N_{2}}{\mathrm{d}t} = \sigma_{\mathrm{g}}c\varphi_{\mathrm{p}}N_{1} + \sigma_{\mathrm{g}}'c\varphi_{\mathrm{Yb}}N_{1} - \frac{N_{2}}{\tau_{\mathrm{g}}} - N_{2}\sigma_{\mathrm{e}}c\varphi_{\mathrm{p}} - N_{2}\sigma_{\mathrm{e}}'c\varphi_{\mathrm{Yb}} + \frac{N_{0} - N_{1} - N_{2}}{\tau_{\mathrm{e}}}, \qquad (4)$$

式中 N_1 、 N_2 、 N_0 相应为1能级、2能级和晶体中总的 Cr⁴⁺数密度。 φ_p 为抽运光的光子数密度,抽运强度 $I_p = c\varphi_p h \nu_p \circ \varphi_{Yb}$ 表示 Yb³⁺自发辐射光子数密度,它 将由计算时刻处于Yb³⁺上能级的粒子数决定,正如 前面所说,这里暂时不考虑ASE效应,将在后面单 独进行计算。 σ_g 、 σ_e 和 σ'_g 、 σ'_e 是1能级、2能级对抽运 光940 nm 波长光和Yb³⁺自发辐射1030 nm 波长 光的吸收截面。

图 2 Cr⁴⁺能级结构示意图

Fig. 2 Energy-level diagram for Cr^{4+}

通过联立(2)~(4)式求解出 t 时刻介质中处于 激发态的 Yb³⁺ 粒子数,根据激发态的 Yb³⁺ 粒子数 求出此时介质中的 SE 光线数为 $\frac{N_U}{\tau_U}\Delta t$,这里 N_U 是 具有空间和时间分布的量, Δt 为计算中离散化的时 间间隔,理论上,该时间间隔越短越接近实际情况, 但计算过程中,其大小将根据实际计算误差和实际 需要进行优化。

正如前面所述,ASE的计算认为介质中某时刻 处于稳态,即:此时忽略抽运过程的影响,激光各能 级上粒子数处于该时刻由速率方程解得的值。所以 在抽运过程中,ASE 光线的放大函数变为[14]

$$E_{\text{ASE}}(x, y, z) = E_{\text{SE}}(x, y, z) \cdot \exp[(g_0 - \alpha_{\text{ns}} - \alpha_{\text{Cr}})d], \qquad (5)$$

式中 d 表示 SE 光线传输的距离, g_0 为根据上能级 粒子数布居计算出的小信号增益系数, α_{ns} 为 YAG 基质材料对 1030 nm 激光光波的吸收系数,通常为 一常数, $\alpha_{Cr} = \sigma'_g N_1 + \sigma'_e N_2 \approx \sigma'_g N_0$ 为 Cr⁴⁺ 对1030 nm 光波的吸收系数。

为了便于计算,将激光介质划分成一定大小的 网格,每一个网格在 t 时刻的储能则为 $E_{SE}(x,y,z,$ t),该值由(2)~(4)式确定。在计算 ASE 时,考虑 ASE 传输放大前为时刻 t,传输放大后为t+dt,则传 输放大后的 ASE 光线能量由(5)式获得,因此,该被 计算的网格的储能改变为

$$\delta E(x, y, z, t) = E_{SE}(x, y, z, t) - E_{SF}(x, y, z, t + dt).$$
(6)

用计算网格的储能减去该网格中由于 ASE 引起的储能改变,即为该网格在终了的 t 时刻的储能。 通过对介质中上能级 Yb³⁺粒子数及网格中储能的 迭代计算,求得介质中在抽运终了时刻的储能及其 分布情况。

3 模拟结果

为了便于计算和与通常情况一致,抽运区域设 计成正方形的空间分布均匀的抽运。为了充分吸收 抽运光,考虑在介质背向抽运光一侧镀对抽运光的 反射膜。根据严雄伟等^[15]的计算和实际能够获得 的抽运强度,将抽运功率密度设定在 20 kW/cm², 此时,针对 Yb:YAG 晶体优化的 Yb³⁺的原子数分 数和厚度的乘积为 15% • mm。数值模拟了不同厚 度下,不同尺寸激光放大器中的储能情况。由于在 介质中掺入 Cr⁴⁺的浓度较低,Cr⁴⁺ 对 Yb³⁺的上能 级寿命影响较小,计算中忽略了 Yb³⁺上能级寿命的 变化,取 Yb³⁺上能级寿命为 1 ms。

图 3 为厚度 3 mm 时,不同口径 Yb:YAG 晶体 放大器中的平均储能密度随抽运时间的变化情况。 根据优化的浓度厚度积,此时,晶体中 Yb³⁺的掺杂 原子数分数为 5%。由图 3 可见,放大器口径从 10 mm×10 mm 增加到 35 mm×35 mm,在1 ms 抽运 周期结束时,放大器中平均储能密度从约 27 J/cm³ 降低到约 16 J/cm³。对于不同的口径,放大器中的 平均储能密度随抽运时间的增加而趋于一恒定值, 到达这一恒定值的时间随着口径的增加而减小。这 主要是由于 ASE 效应随放大器的口径增加而增加, 在相同的抽运条件下,口径较大的放大器中 ASE 效 应较强,损耗较大,而口径小的 ASE 效应较弱,故而 损耗较小。

图 3 不同口径的厚度为 3 mm 放大器中平均储能 密度随抽运时间的变化

Fig. 3 Average density of energy storage versus pumping time in 3 mm amplifier with different apertures

图 4 为口径 10 mm × 10 mm 时,混合掺杂 Cr⁴⁺,Yb:YAG 晶体放大器中储能随抽运时间的变 化情况,这里介质的厚度仍然为 3 mm,其对应的 Yb³⁺原子数分数为 5%(图 4 中曲线标识为 Cr⁴⁺的 掺杂原子数分数)。由图 4 可见,介质中的储能随着 抽运时间的增加成上升的趋势,只是随着介质内储 能的增加,其上升的趋势变慢。这是由于,随着放大 器中储能密度的增加,ASE 效应也逐步加强,这导 致介质中的损耗增加。因此,在抽运强度不变的情 况下,介质中的储能密度的增速将变缓。从图中的 不同曲线可以看出,放大器中的平均储能密度随着 混合 Cr⁴⁺浓度的增加而减小。这主要是由于,在混 合掺入的 Cr⁴⁺吸收带也包含了抽运光的波段,在抽 运过程中,其表现出对抽运光的吸收,因此,随着掺 入 Cr⁴⁺的增加,放大器中的储能降低了。

图 4 10 mm×10 mm 口径下掺入不同原子数分数的 Cr⁴⁺时放大器中的储能随抽运时间的变化(厚度 3 mm) Fig. 4 Average density of energy storage versus pumping time in 10 mm×10 mm×3 mm amplifier with different atom fractions of Cr⁴⁺

由于 Cr⁴⁺ 不仅对抽运光(中心波长为 940 nm) 有吸收,同时,其还对主激光波长 1030 nm 波段具 有可饱和吸收特性。因此,可以想象,当介质中的 ASE 非常严重时,混合掺入的 Cr⁴⁺ 不仅吸收抽运 光,还将表现出对放大器中的 SE 光线的吸收,在一 定的情况下,适当掺入 Cr⁴⁺ 将表现出对放大器中 ASE 的抑制。

图 5 和图 6 是在晶体厚度为 3 mm(对应优化的 原子数分数为5%)时,放大器口径分别为20 mm× 20 mm 和 30 mm×30 mm 的储能随抽运时间的变 化情况。由图可见,在抽运初期,放大器中的储能密 度随掺入 Cr4+浓度的增加而减小;但随着介质内储 能的增加,在抽运后期,掺入 Cr4+浓度较高的放大 器中的储能密度反而增加了。这主要是由于,在抽 运初期,介质内储能密度较低,放大器中的 ASE 对 储能的消耗较小,此时,Cr⁴⁺主要表现为对抽运光的 吸收;但随着抽运时间的加长,介质内的储能密度增 加,放大器中的 ASE 对储能的损耗也相应增加,此 时,介质内 Cr4+ 主要表现为对放大器中 ASE 的吸 收,从而降低了 ASE 损耗,提高了放大器中的储能。 由图 5 和图 6 对比可见,放大器口径的扩大,将加剧 ASE 效应,降低放大器中的储能,为了获得较高的 储能密度,介质中掺入的 Cr4+ 也相应地增加。在 图 5中, 掺入原子数分数为 0.003%的 Cr⁴⁺, 在 1 ms 的抽运时刻获得了最大的储能密度;在图6中,由于 放大器口径的扩大,在1ms的抽运时刻,掺入原子 数分数为 0.004%的 Cr4+ 才获得最大的储能密度。 当进一步增加 Cr⁴⁺ 的浓度,介质中的最大储能密度 减小了。因此,为了获得介质中最大的储能密度,混 合掺入 Cr⁴⁺ 的浓度必须取一个优化值。

图 6 30 mm×30 mm 口径下掺入不同原子数分数的 Cr⁴⁺时放大器储能密度随抽运时间的变化(厚度 3 mm) Fig. 6 Average density of energy storage versus pumping time in 30 mm×30 mm×3 mm amplifier with different atom fractions of Cr⁴⁺

为了适应激光放大器高效热管理的要求,通常 希望激光介质具有较高的掺杂浓度和较薄的厚度。 为此,对Yb³⁺掺杂原子数分数为10%,混合掺入不 同浓度的 Cr⁴⁺ 的 Cr⁴⁺, Yb: YAG 晶体放大器的储 能情况进行了数值模拟,模拟结果如图 7 和图 8 所 示。图 7 为口径 15 mm×15 mm 放大器在不同 Cr4+浓度下的平均储能密度随抽运时间的变化。由 图可见,在 Cr⁴⁺ 原子数分数较小(如 0.001%)的情 况下,介质内1ms后的最终平均储能密度约为 36 J/cm³, 随着掺入 Cr⁴⁺ 浓度的增加, 介质内 1 ms 后的平均储能密度开始上升,最后在掺杂 Cr⁴⁺ 的原 子数分数为 0.007%时,介质内的最终平均储能密 度最大,达到约42 J/cm³,继续增加Cr⁴⁺的浓度,介 质内最终的平均储能反而下降(图7中原子数分数 0.010%曲线)。图 8 为 25 mm×25 mm 口径放大 器内平均储能密度随抽运时间的变化情况。可见, 随着放大器口径的增加,在同样的抽运功率密度和 掺杂浓度情况下,介质内的储能降低了。在 Cr4+ 掺 杂浓度较低的情况下,放大器中抽运结束后的最终 平均储能密度从15 mm×15 mm 口径的约36 J/cm³ 下降到了约32 J/cm³。在较大口径放大器中,随着 掺入 Cr⁴⁺浓度的增加,介质内的最终平均储能密度 有较大幅度的提高(Cr⁴⁺的原子数分数从 0.001% 增加到 0.010%, 放大器中的平均储能密度从 32 J/cm³提高到了 40 J/cm³)。

由图 5~8 可见,随着放大器介质口径(或掺杂 浓度)的增加,放大器介质内的储能密度反而下降, 特别是在放大器中的 ASE 非常强的情况下(如 图 6、图 8 所示),混合掺入可饱和吸收离子,能够较 大幅度地提高放大器介质中的储能密度。

图 7 15 mm×15 mm 口径下掺入不同原子数分数 Cr⁴⁺ 时放大器储能密度随抽运时间的变化(厚度 1.5 mm) Fig. 7 Average density of energy storage versus pumping in 15 mm×15 mm×1.5 mm amplifier with

different atom fractions of Cr4+

图 8 25 mm×25 mm 口径下掺入不同原子数分数 Cr⁴⁺ 时放大器储能密度随抽运时间的变化(厚度 1.5 mm) Fig. 8 Average density of energy storage versus pumping in atom fraction 25 mm×25 mm×1.5 mm

amplifier with different atom fractions of Cr⁴⁺

4 结 论

针对混合掺杂的 Cr⁴⁺,Yb:YAG 晶体放大器, 开展了不同口径、不同掺杂浓度下放大器内储能特 性的研究。研究表明,在放大器口径较小、Yb³⁺掺 杂浓度较低(ASE 较弱)的情况下,介质内混合掺入 的 Cr⁴⁺可饱和吸收离子,主要表现为对抽运光的吸 收,导致放大器中储能密度下降。但在放大器口径 较大、Yb³⁺掺杂浓度较高(ASE 较为严重)的情况 下,适当掺入 Cr⁴⁺可饱和吸收离子,能有效抑制放 大器中的 ASE,提高放大器介质内的储能密度;在 抽运功率一定的情况下,为了获得最大的放大器中 的储能密度,混合掺入的 Cr⁴⁺离子有一优化值,该 值将由放大器的口径、掺杂浓度决定。混合掺入对 主激光具有可饱和吸收特性离子,提高激光放大器 中储能密度的方法,可用于指导大口径放大器的设 计,提高激光系统的能量转换效率,特别是针对大型 激光系统,该方法将大大降低激光系统造价。

参考文献

1 Duan Wentao, Jiang Xinying, Jiang Dongbin *et al.*. 10Hz Jouleclass laser diode end-pumped V-shape water-cooled Yb : YAG oscillator[J]. *Chinese J. Laser*, 2010, **37**(1): 44~48

段文涛,蒋新颖,蒋东镔等.激光二极管端面抽运的焦耳级10 Hz"V"型水冷Yb:YAG激光器[J].中国激光,2010,**37**(1): 44~48

2 Cao Hongzhong, Peng Hongyan, Zhang Meiheng et al.. Development of all-solid-state laser[J]. Laser & Infrared, 2010, 40(2): 115~118
曹洪忠,彭鸿雁,张梅恒等.全固态 Yb:YAG 激光器发展现状

冒洪志, 彭西雁, 张梅钜 等. 至固态 Ib; IAG 激尤益发展现状 [J]. 激光与红外, 2010, **40**(2): 115~118

- 3 Qiang Hao, Wenxue Li, Haifeng Pan et al.. Laser-diode pumped 40-W Yb: YAG ceramic laser[J]. Opt. Express, 2009, 17(20): 17734~17738
- 4 M. Siebold, M. Loeser, U. Schramm *et al.*. High-efficiency, room-temperature nanosecond Yb:YAG laser[J]. Opt. Express, 2009, 17(22): 19887~19893
- 5 Gilbert L. Bourdet, Claude Gouédard. Simple analytical derivations of thermal lensing in longitudinally Q-CW pumped Yb :YAG[J]. Appl. Opt., 2010, 49(22): 4160~4167
- 6 Yang Peizhi, Deng Peizhen, Xu Jun et al.. Spectroscopy and laser performance of Yb³⁺ doped YAG crystal[J]. Acta Optica Sinica, 1999, **19**(1): 132~135

杨培志,邓佩珍,徐 军等. Yb: YAG 晶体的光谱和激光性能 [J]. 光学学报, 1999, **19**(1): 132~135

7 M. Siebold, J. Hein, C. Wandt *et al.*. High-energy, diodepumped, nanosecond Yb : YAG MOPA system [J]. Opt. Express, 2008, 16(6): 3674~3679

8 Lei Hairong, Liu Hongfa, Yan Beisheng *et al.*. Experimental study on a novel solid-state Q-switch-Cr⁴⁺:YAG[J]. Acta Optica Sinica, 1996, **16**(8): 1191~1193 雷海容,刘宏发,严柏生等. 一种新型固体Q开关-Cr⁴⁺:YAG 的实验研究[J]. 光学学报, 1996, **16**(8): 1191~1193

- 9 Dong Jun, Deng Peizhen, Xu Jun et al.. Growth of Cr, Yb: YAG crystal and its absorption spectrum properties[J]. J. Synthetic Crystals, 1999, 28(2): 140~144
 董 俊, 邓佩珍, 徐 军等. Cr⁴⁺, Yb³⁺: YAG 晶体的生长及 其吸收特性[J]. 人工晶体学报, 1999, 28(2): 140~144
- 10 Dong Jun, Deng Peizhen, Xu Jun. The growth of Cr⁴⁺, Yb³⁺ yttrium aluminum garnet (YAG) crystal and its absorption spectra properties[J]. J. Crystal Growth, 1999, **203**(1-2): 163 ~167

11 Dong Jun, Deng Peizhen, Zhang Yinghua et al.. Performance of Cr, Yb: YAG self-Q-switched laser[J]. Chinese J. Lasers, 2001, A28(3): 193~196 董 俊, 邓佩珍, 张影华 等. Cr, Yb: YAG 微片的自调 Q 激光 特性[J]. 中国激光, 2001, A28(3): 193~196

- 12 Shouhuan Zhou, K. K. Lee, Y. C. Chen. Monolithic self-Qswitched Cr, Nd: YAG laser [J]. Opt. Lett., 1993, 18 (7): 511~512
- 13 Dong Jun, Deng Peizhen, Liu Yupu et al.. The self-Q-switch laser from the Cr⁴⁺, Yb³⁺ : YAG crystal disk, pumped by titanium sapphire laser [J]. Chinese J. Lasers, 2000, A27(4): 342

董 俊,邓佩珍,刘玉璞等. 钛宝石激光器抽运 Cr⁴⁺,Yb³⁺: YAG 晶体薄片获得1.03 nm 自调 Q 激光输出[J]. 中国激光, 2000, **A27**(4):342

- 14 Yan Xiongwei, Yu Haiwu, Cao Dingxiang *et al.*. ASE effect in pulsed energy-storage rep-rated Yb:YAG disk laser amplifier[J]. *Acta Physica Sinica*, 2009, **58**(6): 4230~4238 严雄伟, 於海武, 曹丁象 等. 脉冲储能型重复频率 Yb:YAG 片状激光放大器 ASE 效应研究[J]. 物理学报, 2009, **58**(6): 4230~4238
- 15 Haiwu Yu, Gilbert Bourdet. Thickness optimization of the composite gain medium for the oscillator and amplifier of the Lucia laser[J]. Appl. Opt., 2005, 44(33): 7161~7169